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Abstract. We consider the minimization of smooth functions of the Euclidean space with a
finite number of stationary points having moderate asymptotic behavior at infinity. The

crucial role of transition points of first order (i.e., saddle points of index 1) is emphasized. It is
shown that (generically) any two local minima can be connected via an alternating sequence of
local minima and transition points of first order. In particular, the graph with local minima as

its nodes and first order transition points representing the edges turns out to be connected
(Theorem A). On the other hand, any connected (finite) graph can be realized in the above
sense by means of a smooth function of three variables having a minimal number of stationary

points (Theorem B).
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1. Introduction and main results

In this paper we consider the minimization of a Cr function, f; rP2, on the
Euclidean space Rn with Euclidean norm jj � jj. As a general reference we
use [2]. The following asymptotic behavior at infinity (A1) guarantees the
existence of global minima.

ASSUMPTION A1: fðxÞ ! þ1 as jjxjj ! 1.

Let DfðxÞ and D2fðxÞ denote the row vector of partial derivatives of f and
the Hessian matrix of f evaluated at x, respectively. A point �x 2 Rn with
Dfð�xÞ ¼ 0 is called a stationary (or critical) point. Every local minimum is
a stationary point. An additional assumption will be that f has a finite
number of critical points (A2) and that every critical point is nondegener-
ate (A3) (i.e., D2fð�xÞ is nonsingular if Dfð�xÞ ¼ 0Þ.

ASSUMPTION A2: The function f has a finite number of critical points.

ASSUMPTION A3: All critical points of f are nondegenerate, that is,
jjDfðxÞjj þ j detD2fðxÞj > 0 for all x 2 Rn.
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We note that assumption A3 is not very restrictive; in fact, it is generic (cf.
[2, Chapter 7]).
In order to define general descent and ascent directions we introduce a

metric. A Riemannian (or variable) metric R is defined to be a Cr-map-
ping, rP1, from Rn to the cone of symmetric positive definite ðn; nÞ-matri-
ces. The corresponding gradient gradRf is the vector R�1ðxÞ � DTfðxÞ,
where DTf is the transpose of Df. In particular, if RðxÞ � I (I= identity
matrix), then gradRf ¼ rf. Note that the zero set of gradRf is precisely the
set of critical points of f. Outside the critical point set of f the vector-
gradRf (gradRf) is a direction of descent (ascent) in f. The index of a criti-
cal point �x is defined to be the number of negative eigenvalues of the
Hessian D2fð�xÞ. Based on assumption A3, local minima are critical points
of index 0. It turns out that critical (stationary, saddle-) points of index 1
play a crucial role in global optimization. They are also called transition
points of first order (where the order refers to the index). Let �x 2 Rn be a
critical point of index 1. Then, the stable manifold Wsð�xÞ with respect to
the gradient vector field gradRf is one-dimensional. Here, Wsð�xÞ is defined
to be the set of initial values for which the solution xðtÞ of the ODE
_x ¼ gradRfðxÞ has the asymptotic property: limt!1 xðtÞ ¼ �x. Concerning
the stable manifold Wsð�xÞ we will make the following mild assumption A4.

ASSUMPTION A4: Let �x 2 Rn be a critical point of index 1 for f and let
�Wsð�xÞ be the closure of the stable manifold Wsð�xÞ corresponding to the
gradient field gradRf. Then, the only critical points in the set �Wsð�xÞnf�xg
are (one or two) local minima.

Assumption A4 is mild in the sense that it can be realized by means of a
slight C1-perturbation of the Riemannian metric R. or a slight C2-pertur-
bation of f near �x.
For a given pair ð f;RÞ satisfying A1–A4 we define the following graph

C ¼ Cð f;RÞ. The nodes of C are represented by the local minima of f.
Its edges are represented by means of the stable manifolds W s (with
respect to gradRf) corresponding to the critical points of index 1 for f.
Note that an edge might connect two different nodes, but it also might
be a loop.
The connectedness of the graph Cð f;RÞ is of fundamental importance.

In fact, if Cð f;RÞ is connected, then it is possible to connect any two local
minimizers by means of a finite sequence min! 1-order ! min! 1-order
! � � � ! min, where 1-order stands for a transition point of first order (i.e.,
critical point of index 1).

THEOREM A. Under the assumptions A1–A4 the graph Cð f;RÞ is con-
nected.
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REMARK. A version of Theorem A for compact manifolds without
boundary was proven in [1]. The case of manifolds with boundary and
adaptive metrics is discussed in [3]. In [1, 2] the so called 0-1-0 graph is
introduced. Its correspondence with the graph Cð f;RÞ is as follows:
Replace each edge in Cð f;RÞ (=stable manifold at a critical point of index
1, say �x) by means of a sequence edge-node-edge, where the node is repre-
sented by the critical point �x.
Theorem A gives rise to the question what kind of connected graphs

may appear as graphs of the type Cð f;RÞ. This is answered by Theorem B.

THEOREM B. Every connected (finite) graph C can be realized in Rn, nP 3,
as a graph of the type Cð f;RÞ, where ð f;RÞ satisfies the assumptions A1–
A4.

In particular, let jCj denote the number of nodes of C and let m be the
cyclomatic number of C. We will realize Cð f;RÞ with a smooth function of
three variables which coincides with the quadratic function ðx1;x2; x3Þ 7!
x21 þ x22 þ x23 outside a compact set, with RðxÞ � I. The function f will have
jCj local minima, jCj þ m� 1 critical points of index 1, m critical points of
index 2 and no other critical points.

2. On the special role of first order transition points; proof of Theorem A

The proof of Theorem A is based on ideas from Morse Theory (cf. [2, 4]).
In particular, connectivity arguments play the basic role (cf. [1, 2, Theorem
8.4.4]). Let us firstly draw some conclusions from the assumptions A1–A4.
With f a we denote the lower level set fx 2 Rnj fðxÞO ag. The proofs of the
next two lemmas are straightforward.

LEMMA 2.1. Assumption A1 implies that f a is compact for all all a 2 R.
Let Cf denote the critical point set of f.

LEMMA 2.2. If a 2 ffðxÞjx 2 Cfg, then f a is empty or a manifold with
boundary.

For manifolds (with boundary) the concepts connectedness and path con-
nectedness coincide. Therefore, in the sequel we only use the word connect-
edness.

LEMMA 2.3. Let �c ¼ maxffðxÞjx 2 Cfg. For a > �c the lower level set f a is
connected.

Proof. For b > a > �c the sets f a and f b are homeomorphic.
In fact, note that f�1ð½a; b�Þ is compact and does not contain critical
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points. The desired homeomorphism can be realized by means of integrat-
ing the C1 vector field jjDf jj�2�DTf. Integrating the latter vector field over
the time b� a, the level f ¼ a is moved into the level f ¼ b, inducing a
homeomorphism between f a and f b. In particular, there is a one-to-one
correspondence between the (connected) components of f a and those of f b.
Now, let a > �c and suppose that f a is not connected. Then, as a compact
manifold (with boundary), f a consists of a finite number of connected com-
ponents. Choose a point in each component; the latter points are contained
in some ball B ¼ fx 2 Rn j jjxjjO rg. It follows that the set f a [ B is con-
nected. With b ¼ maxf fðxÞjx 2 Bg we have b > a. To each (connected)
component of f b corresponds precisely one component of f a. This, how-
ever, cannot be the case since f b contains the connected set f a [ B. (

Next, we recall the role of critical points of index k with respect to the
topology of lower level sets. As in the proof of Lemma 2.3 we see: If b > a
and f�1ð½a; b�Þ does not contain critical points, then f a and f b are homeo-
morphic. Consequently, in this case the lower level sets f a and f b are the
same from a topological point of view. In particular we have
#ð f aÞ ¼ #ð f bÞ, where # stands for the number of connected components.
Now, suppose that �x 2 Rn is a critical point of index k, a < fð�xÞ < b and
that x is the only critical point in f�1ð½a; b�Þ. Then, f b has the homotopy
type of f a with a k-cell (=k-dimensional ball) attached (along its boundary)
(cf. [2, Theorem 2.8.5]). If k ¼ 0 (local minimum case), this means that
#ð f bÞ ¼ #ð f aÞ þ 1. Now, let k ¼ 1 (transition point of first order). A
1-cell is a topological copy of the interval [0, 1]. The crucial point is that
the boundary of [0, 1] consists of two components f0g and f1g. When
attaching a 1-cell there are precisely two possibilities (P1), (P2):
(P1): The two boundary points are attached at two different components

of f a. In this case we have #ð f bÞ ¼ #ð f aÞ � 1. Such a critical point of index
1 is called a decomposition point. In fact, as the function value decreases
from b to a, one component splits up (decomposes) into two components.
(P2): The two boundary points are attached to the same component of

f a. In this case, we have #ð f bÞ ¼ #ð f aÞ.
If k > 1 (transition points of higher order), the boundary of a k-cell is a

sphere Sk�1 which is connected. Attaching a k-cell to f a means that the
boundary Sk�1 is mapped continuously to the set f a. Since the image of a
connected set under a continuous mapping is connected, we see that the
number of connected components does not change in this case, hence we
have #ð f bÞ ¼ #ð f aÞ.
Altogether we have:

#ð f bÞ ¼ #ð f aÞ þ 1 iff �x is a local minimum

#ð f bÞ ¼ #ð f aÞ � 1 iff �x is a decomposition point
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In all other cases: #ð f bÞ ¼ #ð f aÞ.
Now we are ready to prove Theorem A.

Proof of Theorem A. Let ð f;RÞ satisfy the assumptions A1–A4. Set
Cf ¼ f�x1; �x2; . . . ; �xpg. In case that some of the values fð�xiÞ coincide, we
locally perturb f (in the C2-sense) by adding (locally) suitable small con-
stants to the values fð�xiÞ, i ¼ 1; . . . ; p. For small perturbations the resulting
graph will be isomorphic to Cð f;R). Therefore, we assume in the rest of
the proof that the critical values, fð�xiÞ, i ¼ 1; . . . ; p, are pairwise different.
Set m ¼ minffðxÞjx 2 Cfg, M ¼ maxffð�xÞjx 2 Cfg. Now let us monotoni-
cally increase the functional value, starting at a value a < m and ending up
at a value b >M. In between we mark the changes in the number of com-
ponents of the corresponding lower level sets. Note that #ð f aÞ ¼ 0 (since
f a ¼ ø) and that #ð f bÞ ¼ 1 (since f b is connected; see Lemma 2.3).
Between a and b there is only a change in # at local minima (# :¼ # þ 1)
and at decomposition points (# :¼ # � 1). It follows in particular, that the
number of decomposition points is one less than the number of local min-
ima. As in the proof of Theorem 8.4.4 in [2] it follows that the subgraph
eCð f;RÞ is connected. Here, eCð f;RÞ is obtained from Cð f;RÞ by deleting
the edges corresponding to the stable manifolds of those critical points of
index 1 which are not decomposition points. But then, Cð f;RÞ is connected
as well. In fact, eCð f;RÞ is a spanning tree for Cð f;RÞ. (

3. Proof of Theorem B

In this section we show the main steps in the proof of Theorem B. Let C
be a connected graph with jCj nodes and cyclomatic number m. The Rie-
mannian metric R will be fixed by putting RðxÞ ¼ I. Set
Fðx1;x2; x3Þ ¼ x21 þ x22 þ x23. We will construct a smooth function f of three
variables with Cð f;RÞ isomorphic to C. The function f coincides with F
outside a ball BðrÞ, where BðrÞ ¼ fx 2 R3 j jjxjjOrg. Its critical point set
consists precisely of jCj local minima, jCj þ m� 1 critical points of index 1
and m critical points of index 2.
We note that an example in higher dimensions, say in dimension n > 3,

will be provided by the function fðx1;x2; x3Þ þ
Pn

i¼4 x
2
i .

The function f will be constructed step by step by deforming the initial
function F in a suitable way. In fact, in each step a pair of critical points
ð�x; �yÞ of indices (0, 1) and (1, 2), respectively, is inserted. During this pro-
cess we have to avoid knots in stable manifolds corresponding to critical
points of index 1 (see [2, Figure 1.6.5] for such a situation).
The desired pairs of critical points will be inserted by plugging in

(slightly deformed) copies of the functions uðu1Þ þ u22 þ u23 and
wðu1; u2Þ þ u23, where u and w are shaped as in Figure 1.
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Note that the function u in Figure 1 has one local minimum and one
local maximum. Consequently, the function uðu1Þ þ u22 þ u23 has one local
minimum and one critical point of index 1 (both nondegenerate).
The function w in Figure 1 has precisely one saddle point and one local

maximum. Hence, the function wðu1; u2Þ þ u23 has one critical point of
index 1 and one critical point of index 2 (both nondegenerate).
For the global construction we choose a spanning tree T of the graph C.

Suppose that a proper subtree eT of T is already established. We show how
to insert an additional pair (node �x, edge �e) where the edge �e connects a
given node ex of eT with the node �x.
With � > 0 sufficiently small, let BeðexÞ be the component of the set
fxj fðexÞO fðxÞ O fðexÞ þ eg which contains ex. Let SeðexÞ denote the bound-
ary of BeðexÞ. On the set SeðexÞ we choose a point xs which is not included
in the intersection set of SeðexÞ with all stable manifolds corresponding to
critical points of index 1 (constructed so far). Put cð eTÞ ¼ maxf fðxÞjx
is a local minimum or a critical point of index 1 involved in eTg. We sup-

pose that for some value a > cð eTÞ the function f (constructed so far) coin-
cides with F outside the ball Bð12

ffiffiffi
a
p
Þ. The integral curve of the ODE

_x ¼ DTfðxÞ with the chosen point xs as initial point intersects the level set
F ¼ a in exactly one point, say xas . In a neighborhood of the point xas we
may plug in a suitable copy of the function uðu1Þ þ u22 þ u23 (+constant)
such that the stable manifold corresponding to the new critical point of
index 1 (say x�e) contains the point xs. The latter stable manifold represents
the edge �e new local minimum represents the node �x. In this way we
obtain a further update of f. The levels of f exceeding the level fðx�eÞ have
to be adapted in such a way that from a certain level b on, the function f
coincides with F outside the ball Bð12

ffiffiffi
b
p
Þ. This roughly explains the realiza-

tion of the spanning tree T.
Now we proceed realizing the remaining part of the graph C. The cyclo-

matic number of C equals m. We successively insert m pairs of critical points

Figure 1. The functions u and w.
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of index (1,2). Suppose that we already realized m0 < m edges of CnT. We
show how to realize an edge �e in CnT which has not yet been constructed.
The edge �e, might connect two different nodes (local minima) ex1 and ex2,
or it is only connected with one node ex (the case of a loop). We start with
the case of two different local minima ex1, ex2. As in the discussion before,
we choose again) spheres Seðex1Þ and Seðex2Þ around ex1 and ex2, respectively.
On Seðex1Þ we choose a point x1s which is not included in the intersection
set of Seðex1Þ with all stable manifolds corresponding to critical points of
indices 1 and 2 constructed so far. In a similar way we choose a point
x2s on Seðex2Þ. Put c ¼ maxf fðxÞjx is a local minimum or a critical point of
index 1or 2, constructed so farg. We suppose that for some a > c the func-
tion f (constructed so far) coincides with F outside the ball Bð12

ffiffiffi
a
p
Þ. The

integral curves of the ODE _x ¼ DTfðxÞ with the points x1s and x2s as initial
points, intersect the level F ¼ a in two points, say x1as and x2as , respectively.
A suitable choice of x1s will guarantee that the points x1as and x2as are not
antipodal on the sphere F ¼ a. Let G be the unique geodesic on the sphere
F ¼ a connecting x1as and x2as . Along this geodesic we may plug in a suit-
able copy of the function wðu1; u2Þ þ u23 (+ constant), such that the stable
manifold corresponding to the new critical point of index 1 (say x�e) con-
tains both points x1s , x

2
s . The latter stable manifold represents the edge �e.

Let x̂ denote the new critical point of index 2. The levels of f exceeding the
level fðx̂Þ have to be adapted in such a way that from a certain level b on,
the function f coincides with F outside the ball Bð12

ffiffiffi
b
p
Þ. This completes the

construction step in case that the edge �e connects two different nodes
(local minima). If �e is a loop connected to the node ex we choose both
points x1s and x2s , x1s 6¼ x2s , on the same sphere SeðexÞ and we proceed as
above. (
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